Publication

European Heart Journal Open 3, 6, oead098 (2023)
Combination of sacubitril/valsartan and blockade of the PI3K pathway enhanced kidney protection in a mouse model of cardiorenal syndrome

Author

Shunichiro Tsukamoto, Hiromichi Wakui, Tatsuki Uehara, Yuka Shiba, Kengo Azushima, Eriko Abe, Shohei Tanaka, Shinya Taguchi, Keigo Hirota, Shingo Urate, Toru Suzuki, Takayuki Yamada, Sho Kinguchi, Akio Yamashita, Kouichi Tamura

Category

Paper

Abstract

Abstract Aims: Angiotensin receptor-neprilysin inhibitor (ARNI) is an established treatment for heart failure. However, whether ARNI has renoprotective effects beyond renin-angiotensin system inhibitors alone in cardiorenal syndrome (CRS) has not been fully elucidated. Here, we examined the effects of ARNI on the heart and kidneys of CRS model mice with overt albuminuria and identified the mechanisms underlying ARNI-induced kidney protection. Methods and results: C57BL6 mice were subjected to chronic angiotensin II infusion, nephrectomy, and salt loading (ANS); they developed CRS phenotypes and were divided into the vehicle treatment (ANS-vehicle), sacubitril/valsartan treatment (ANS-ARNI), and two different doses of valsartan treatment (ANS-VAL M, ANS-VAL H) groups. Four weeks after treatment, the hearts and kidneys of each group were evaluated. The ANS-vehicle group showed cardiac fibrosis, cardiac dysfunction, overt albuminuria, and kidney fibrosis. The ANS-ARNI group showed a reduction in cardiac fibrosis and cardiac dysfunction compared with the valsartan treatment groups. However, regarding the renoprotective effects characterized by albuminuria and fibrosis, ARNI was less effective than valsartan. Kidney transcriptomic analysis showed that the ANS-ARNI group exhibited a significant enhancement in the phosphoinositide 3-kinase (PI3K)-AKT signalling pathway compared with the ANS-VAL M group. Adding PI3K inhibitor treatment to ARNI ameliorated kidney injury to levels comparable with those of ANS-VAL M while preserving the superior cardioprotective effect of ARNI. Conclusion: PI3K pathway activation has been identified as a key mechanism affecting remnant kidney injury under ARNI treatment in CRS pathology, and blockading the PI3K pathway with simultaneous ARNI treatment is a potential therapeutic strategy for treating CRS with overt albuminuria.
URL